Engaging topics at a glance
"Exploring what should organization considering when choosing to adopt LLMs" with guest Nick Brady, Senior Program Manager at Microsoft Azure Open AI Service
AI has been at the forefront of transformation for more than a decade now. Still, the Open AI launch of chat GPT in November 2022 will be noted as a historical moment – the scale of which even Open AI did not expect – in the history of technological innovations. Most people don’t realize or fully appreciate the magnitude of the shift that we’re in. Now, we’re able to directly express to a machine a problem that we need to have solved; equipping these technologies with the right reasoning engines and the right connectivity could bring the biggest technology leapfrog not just for enterprises but even in everyday lives.
The onset of leapfrog does bring out a few questions for enterprises looking to adopt GenAI as a part of their strategy, operations and way ahead, like:
if we equip these technologies with the right reasoning engines and the right connectivity to this work and the things that we do every single day, this could be the single most democratising force of technology like the world has ever seen, not just in enterprise but even in our personal lives.rn
– Nick Brady
What use cases are best suited to adopt the models?
While most customers are looking for how this could reduce business costs in their organizations, the true value is when it is used to maximize business value productivity and downstream that could lead to employee satisfaction and customer satisfaction. Any place where there’s language – programming or natural language – is a good use case for generative AI, and that probably would be the most profound shift. So, if you have language, if you have a document, if you have big data where you’re trying to sort of synthesize, understand what that content and what the content is, generative AI models can do this ad nauseam without any delay.
The interesting thing about parameters is it’s actually not a direct correlation to how powerful the model might be. I mean, the parameter size refers to essentially the number of values that the model can change independently as it learns from data.
– Nick Brady
The most common metric used across the world to describe LLMs is the number of parameters; in the case of GPT 3, it is trained on 175 billion parameters, but what does this mean?
Parameter size refers to essentially the number of values that the model can change independently as it learns from data and stores all information in the vast associative ray of memory as its model weights. What’s perhaps more important for these models, and it speaks to more of their capability, is their vocabulary size.
How does one decide and evaluate which would be the best-suited model for the selected use cases?
The best practice really is to start with the most powerful and advanced language model like GPT 4.0 to test, if it’s even possible, with your use case. Post confirming the possibility of use case trickle down to simpler models to find its efficacy and efficiency. If the simpler model can probably achieve 90% of the way, with just a little bit of prompt engineering, then you could optimize for costs.
But many of LLMs are English only and that’s a real problem, especially for multinational enterprises and organisations that have diverse employees and diverse customers that speak in many different languages.
– Nick Brady
Organizations would have to define what quality means to them. It could be the model’s output, its core response, or performance in terms of latency, where the quality of the output may not be as important as how quickly we can respond back to the user.
The key for leaders is to pay close attention to the potential use cases, test them with the best model and then optimize the model to balance the cost, efficacy and efficiency factors.
Production Team
Arvind Ravishunkar, Ankit Pandey, Chandan Jha
Engaging topics at a glance
“Exploring Reinforcement Learning” with guest Vivek Farias, Professor, MIT, discusses what role reinforcement learning has to play in this world of Artificial Intelligence.
Learning systems with humans date back to almost 5,000 years ago. And these learning systems have what allowed us to progress as a society. Being able to teach other people what we know and share knowledge has been the foundational pillars of our evolution and civilization. And interestingly, these learning systems are not unique to just humans. Animals also have these learning systems. When you look at orcas, dolphins, the higher-order intelligent animals spend time training and teaching their young ones. In the last 50 to 60 years, we have not just been teaching humans how to learn, but we have been teaching machines how to learn. And this artificial intelligence area has benefited from our understanding of these learning systems.
The guest started with highlighting the importance of acknowledging uncertainty and balancing between exploiting what is known and exploring to learn more about the environment. This problem is referred to as a "multi-arm bandit problem" and is considered fundamental in reinforcement learning, where the goal is to optimize actions in an environment.
When looking at it specifically for Large Language Models (LLMs) the role of Reinforcement Learning. RL has played the central role in building general purpose chatbots that are based on LLMs. Because the resulting model that has been trained on data might not give you the refined output that you are expecting from it.
When discussing about rewards and losses in reinforcement learning phase, it came out that the way we structure rewards and penalties for AI models greatly influences their reliability, how they interact with public and the accountability.
Overall deploying AI involves a balance. Backend deployment offers some level of predictability, while front-end deployment is uncertain. Successful business must experiment and capitalize in both aspects.
Production Team
Arvind Ravishunkar, Ankit Pandey, Chandan Jha
Engaging topics at a glance
Gain valuable perspectives on integrating responsible AI into business strategies from Dr. Rachel Adams, CEO and founder of the Global Center on AI Governance.
In this insightful podcast, we embark on a journey to understand the intricate landscape of responsible AI practices, especially tailored for business leaders. Dr. Rachel Adams, one of the top global voices on responsible AI and the founder and CEO of the Global Center on AI Governance, serves as our guide through this complex terrain.
The conversation begins by framing the discussion around the concept of "thinking with care" when it comes to AI development and deployment. Dr. Adams emphasizes the importance of inclusivity and diversity in AI development, particularly in addressing the unique needs of different regions and communities worldwide. She stresses the significance of aligning technological advancements with the real needs of people, advocating for a user-centric approach driven by community engagement and feedback.
As the dialogue progresses, the focus shifts towards the role of business leaders in navigating the multifaceted dimensions of responsible AI. Dr. Adams elucidates the critical considerations that business leaders must keep in mind during both the development and deployment phases of AI initiatives. From addressing inherent biases in AI models to safeguarding user privacy and data protection, she outlines a comprehensive framework for ethical AI governance within organizations.
Moreover, Dr. Adams sheds light on emerging policy developments in the field of AI regulation, highlighting the European AI Act as a pioneering effort in this space. She underscores the need for nuanced, sector-specific regulations tailored to the diverse contexts and challenges faced by different industries and regions.
Throughout the conversation, Dr. Adams emphasizes the importance of collaboration and cross-disciplinary dialogue in advancing responsible AI practices. She underscores the need for closer collaboration between technologists, policymakers, and communities to navigate the evolving landscape of AI governance effectively.
As the podcast draws to a close, we reflect on the fundamental principles of responsible AI adoption, emphasizing the imperative of "thinking with care" in every aspect of AI development and deployment. Dr. Adams reiterates the need for a collective effort to ensure that AI technologies are developed and deployed in a manner that prioritizes human values, equity, and societal well-being.
In summary, this podcast provides invaluable insights into the complex challenges and opportunities presented by AI technology for business leaders. Through engaging dialogue and expert analysis, Dr. Rachel Adams offers a roadmap for ethical AI adoption, empowering business leaders to navigate the ethical complexities of AI with confidence and integrity.
Production Team
Arvind Ravishunkar, Ankit Pandey, Chandan Jha
This is your invitation to become an integral part of our Think Tank community. Co-create with us to bring diverse perspectives and enrich our pool of collective wisdom. Your insights could be the spark that ignites transformative conversations.
Learn MoreKey Speakers
Thank you for subscribing!!!